La disposición de los átomos en un cristal puede conocerse por difracción de los rayos X.
Cuando las condiciones son favorables, cada elemento o compuesto químico tiende a cristalizarse en una forma definida y característica. Así, la sal tiende a formar cristales cúbicos, mientras que el granate, que a veces forma también cubos, se encuentra con más frecuencia en dodecaedros o triaquisoctaedros. A pesar de sus diferentes formas de cristalización, la sal y el granate cristalizan siempre en la misma clase y sistema.
En teoría son posibles treinta y dos clases cristalinas, pero sólo una docena incluye prácticamente a todos los minerales comunes y algunas clases nunca se han observado. Estas treinta y dos clases se agrupan en seis sistemas cristalinos, caracterizados por la longitud y posición de sus ejes. Los minerales de cada sistema comparten algunas características de simetría y forma cristalina, así como muchas propiedades ópticas importantes.
Elementos de simetría
Las celdas fundamentales de un cristal presentan elementos de simetría, que son:
-Eje de simetría: es una línea imaginaria que pasa a través del cristal, alrededor de la cual, al realizar éste un giro completo, repite dos o más veces el mismo aspecto. Los ejes pueden ser: monarios, si giran el motivo una vez (360º); binarios, si lo giran dos veces (180º); ternarios, si lo giran tres veces (120º); cuaternarios, si lo giran cuatro veces (90º); o senarios, si giran el motivo seis veces (60º).
-Plano de simetría: es un plano imaginario que divide el cristal en dos mitades simétricas especulares, como el reflejo en un espejo, dentro de la celda. Puede haber múltiples planos de simetría. Se representa con la letra m.
-Centro de simetría: es un punto dentro de la celda que, al unirlo con cualquiera de la superficie, repite al otro lado del centro y a la misma distancia un punto similar.
-Sistemas cristalinos: todas la redes cristalinas, al igual que los cristales, que son una consecuencia de las redes, presentan elementos de simetría. Si se clasifican los 230 grupos espaciales según los elementos de simetría que poseen, se obtienen 32 clases de simetría (cada una de las cuales reúne todas las formas cristalinas que poseen los mismos elementos de simetría) es decir, regular o cúbico, tetragonal, hexagonal, romboedrico rombico, monoclínico y triclínico.
-Hábito cristalino: es el aspecto que presenta un cristal como consecuencia del diferente desarrollo de sus caras.
-Hábito acicular: cristales con gran desarrollo de caras verticales. Tienen aspecto de agujas.
-Hábito honojoso: cristales con aspecto de hojas por el gran desarrollo de las caras horizontales.
Las Redes de Bravais.
Las Redes de Bravais o celdas unitarias, son paralelepípedos que constituyen la menor subdivisión de una red cristalina que conserva las características generales de toda la retícula, de modo que por simple traslación del mismo, puede reconstruirse el sólido cristalino completo.
En función de los parámetros de la celda unitaria, longitudes de sus lados y ángulos que forman, se distinguen 7 sistemas cristalinos.
Ahora bien, para determinar completamente la estructura cristalina elemental de un sólido, además de definir la forma geométrica de la red, es necesario establecer las posiciones en la celda de los átomos o moléculas que forman el sólido cristalino; lo que se denominan puntos reticulares. Las alternativas son las siguientes:
-P: Celda primitiva o simple en la que los puntos reticulares son sólo los vértices del paralelepípedo.
-F: Celda centrada en las cara, que tiene puntos reticulares en las caras, además de en los vértices. Si sólo tienen puntos reticulares en las bases, se designan con las letras A, B o C según sean las caras que tienen los dos puntos reticulares.
-I: Celda centrada en el cuerpo que tiene un punto reticular en el centro de la celda, además de los vértices.
-R: Primitiva con ejes iguales y ángulos iguales ó hexagonal doblemente centrada en el cuerpo, además de los vértices.
Combinando los 7 sistemas cristalinos con las disposiciones de los puntos de red mencionados, se obtendrían 28 redes cristalinas posibles. En realidad, como puede demostrarse, sólo existen 14 configuraciones básicas, pudiéndose el resto obtener a partir de ellas. Estas estructuras se denominan redes de Bravais.
No hay comentarios:
Publicar un comentario