La mayor parte de los sólidos presentes en la naturaleza son cristalinos, aun cuando en ocasiones esa estructura ordenada no se refleje en una forma geométrica regular apreciable a simple vista. Ello es debido a que con frecuencia están formados por un conjunto de pequeños cristales orientados de diferentes maneras, en una estructura policristalina. Los componentes elementales de una red cristalina pueden ser átomos, moléculas o iones, de ahí que no se pueda hablar en general de la molécula de un cristal, si no más bien de un retículo elemental o celdilla unidad, que se repite una y otra vez en una estructura periódica o red cristalina.
ENLACES EN LOS SÓLIDOS
Los sólidos cristalinos se clasifican en cuatro categorías, según los tipos de partículas que forman su retículo y los enlaces e interacciones que se presentan entre ellas. Estas cuatro categorías son: 1) sólidos moleculares, 2) sólidos covalentes, 3) sólidos iónicos y 4) sólidos metálicos. Algunas de sus características son:
¿Qué es una zona cristalina y qué una zona amorfa?
Todos los materiales sólidos pueden clasificarse de acuerdo a su estructura molecular en cristalinos y amorfos.
En los sólidos cristalinos, las moléculas se encuentran ordenadas en las tres dimensiones. Esto es lo que se llama ordenamiento periódico y lo pueden tener los sólidos cristalinos constituidos por moléculas pequeñas. En el caso de los polímeros, las cadenas son muy largas y fácilmente se enmarañan y a demás, en el estado fundido se mueven en un medio muy viscoso, así que no puede esperarse en ellos un orden tan perfecto, pero de todas maneras, algunos polímeros exhiben ordenamiento parcial en regiones llamadas cristalitos.
Una sola macromolécula no cabrá en uno de esos cristalitos, así que se dobla sobre ella misma y a demás puede extenderse a lo largo de varios cristalitos.
Se distinguen regiones de dos clases: las cristalinas, en la que las cadenas dobladas varias veces en zigzag están alineadas formando las agrupaciones llamadas cristalitos; y otras regiones amorfas, en la que las cadenas se enmarañan en un completo desorden.
La proporción o porcentaje de zonas cristalinas puede ser muy alta, como en el polietileno, en el nylon y en la celulosa.
En esos casos puede considerarse que el material contiene una sola fase, que es cristalina, aunque con muchos defectos.
En otros polímeros, como el PVC, el grado de cristalinidad es mucho menor y es más razonable considerarlo como sistemas de dos fases, una ordenada, cristalina, embebida en una matriz amorfa.
Finalmente hay otros polímeros totalmente amorfos, como es el caso del poliestireno atáctico.
El grado de cristalinidad de los polímeros, que por su estructura regular y por la flexibilidad de sus cadenas tienen mayor tendencia a cristalizar, depende de las condiciones de la cristalización. Si el polímero cristaliza a partir del material fundido, habrá más imperfecciones porque las cadenas se enredan y el medio es muy viscoso, lo cual dificulta el ordenamiento de ellas. En cambio, si el polímero cristaliza de una solución diluida, es posible obtener cristales aislados, con estructuras bien definidas como en el caso del polietileno, de donde se distinguen las llamadas lamelas formada por cadenas dobladas muchas veces sobre sí mismas.
El grado de cristalinidad de los polímeros, que por su estructura regular y por la flexibilidad de sus cadenas tienen mayor tendencia a cristalizar, depende de las condiciones de la cristalización. Si el polímero cristaliza a partir del material fundido, habrá más imperfecciones porque las cadenas se enredan y el medio es muy viscoso, lo cual dificulta el ordenamiento de ellas. En cambio, si el polímero cristaliza de una solución diluida, es posible obtener cristales aislados, con estructuras bien definidas como en el caso del polietileno, de donde se distinguen las llamadas lamelas formada por cadenas dobladas muchas veces sobre sí mismas.
En estos casos, si la solución contiene menos de 0,1 % de polímero, la posibilidad de que una misma cadena quede incorporada a varios cristales se reduce o se elimina.
La cristalización a partir del polímero fundido conduce a la situación descripta anteriormente, en la que se tendrán dos fases: cristalina y amorfa, con algunas cadenas participando en varios cristalitos, actuando como moléculas conectoras. También es frecuente que los cristalitos mismos se agrupen radicalmente a partir de un punto de nucleación y crezcan en él en forma radical, formando esferulitos.
Un enfriamiento muy rápido puede reducir considerablemente el grado de cristalinidad.
Los cristalitos también pueden agruparse de otras maneras, generando fibrillas; la formación de fibrillas en lugar de esferulitos, dependerá de factores tales como la flexibilidad de la cadena y las interacciones entre ellas, el peso molecular del polímero, la velocidad del enfriamiento y en muchos casos del tipo de esfuerzo del cual se somete al material durante el procesamiento.
Los cristales fibrilares pueden producirse en los procesos de inyección o de extrusión, o durante el proceso de estirado de algunos materiales que se emplean en la industria textil (nylon y poliésteres).
Diferencias con los sólidos cristalinos
La principal diferencia entre un sólido cristalino y un sólido amorfo es su estructura. En un sólido cristalino existe una ordenación de los átomos a largo alcance, mientras que en los sólidos amorfos no se puede predecir donde se encontrará el próximo átomo. En este hecho se basan los diferentes métodos de diferenciación entre ambos tipos de sólido, que en algunos casos no es fácil de establecer a simple vista. Dichos métodos de diferenciación incluyen:
Difracción
La difracción consiste en enviar un haz de radiación sobre el sólidos y tomar medidas a diferentes ángulos en un amplio rango angular, con el objetivo de deducir la disposición de los átomos en el sólido objeto de estudio. Los picos que aparecen en el diagrama de difracción (difractograma), corresponden a la diferencia constructiva del haz de radiación con un plano atómico, es decir, cuando se cumple la ley de Bragg (permite estudiar las direcciones en las que la difracción de rayos X sobre la superficie de un cristal produce interferencias constructivas).
Existen diferentes métodos de difracción, que dependen del tipo de sonda enviada hacia la muestra. Los tres tipos de sonda más utilizados en difracción son los rayos X, los de neutrones y los de electrones. Las diferencias entre ellos se establecen en la longitudes de onda y el mecanismo de interacción. De estos tres tipos de difracción, la más habitual para el estudio de los sólidos es la de rayos X.
En un sólido cristalino la disposición de sus átomos guarda una simetría. Por esa razón, su diagrama de difracción por rayos X muestra varios picos muy bien definidos a unos ángulos determinados. Con los datos de la intensidad y de la posición angular, así como las fórmulas de interacción entre rayos X y el sólido, se puede calcular la posición de los átomos en ese sólido.
En un sólido amorfo, los átomos están colocados al azar, debido a lo cual, en su diagrama de difracción se observan pocos picos, en general uno, que se caracteriza por una gran anchura angular. Analizando la anchura angular del pico junto con la intensidad y el tipo de interacción, se puede obtener la función de distribución radial, que da la distancia a primeros vecinos de encontrar un nuevo átomo.
Calorimetría
La calorimetría consiste en medir la cantidad de calor captado o cedido por el sólido estudiado en el momento de solidificación. En un sólido amorfo, la disposición irregular de sus átomos hace que posea una alta entropía (alto desorden) con respecto al sólido cristalino, que está perfectamente ordenado. A la hora de la cristalización, esta alta entropía hace que la variación de calor sea muy suave y por lo tanto esté muy extendido en un gran rango de temperaturas. Sin embargo, el calor específico del sólido cristalino durante la cristalización muestra un pico estrecho bien definido a una temperatura concreta, que corresponde a la temperatura de cristalización.
hola chiquillas esta super bueno su blog
ResponderEliminarnos vemos...
XD
Don't buy E-Cig but before studying the blog to understand more and discover how it'll advantage your
ResponderEliminarlife.
Review my page - Www.Airshipdowns.com
Grеetings! Vегy useful advice in this particular article!
ResponderEliminarΙt's the little changes that make the greatest changes. Thanks a lot for sharing!
Also visit my web blog: quinsa.Net